Different levels of Hoxa2 are required for particular developmental processes
نویسندگان
چکیده
Hoxa2 is required for a variety of developmental processes in the branchial arches and in the hindbrain. We have created a Hoxa2 allele that is about 45% as active in transcription as its wild-type counterpart. This allele, together with the Hoxa2 null and wild-type alleles, allowed the generation of embryos developing in the presence of different levels of Hoxa2 activity. Analysis of these embryos indicates that in general the hindbrain is more resistant to Hoxa2 deficiencies than the second branchial arch. Also, within the second arch, proximo-caudal areas are more sensitive than the rostro-distal. In the hindbrain, basic segmentation and patterning processes seem to occur normally at Hoxa2 levels as low as 20% of the normal. In addition, specific neuronal markers along the dorso-ventral axis of the hindbrain seem differentially affected by reduced Hoxa2 levels. These results provide new clues to understand the role of Hoxa2 in the different embryonic areas where it is required.
منابع مشابه
Hoxa2 downregulates Six2 in the neural crest-derived mesenchyme.
The Hoxa2 transcription factor acts during development of the second branchial arch. As for most of the developmental processes controlled by Hox proteins, the mechanism by which Hoxa2 regulates the morphology of second branchial arch derivatives is unclear. We show that Six2, another transcription factor, is genetically downstream of Hoxa2. High levels of Six2 are observed in the Hoxa2 loss-of...
متن کاملGenome-wide occupancy links Hoxa2 to Wnt–β-catenin signaling in mouse embryonic development
The regulation of gene expression is central to developmental programs and largely depends on the binding of sequence-specific transcription factors with cis-regulatory elements in the genome. Hox transcription factors specify the spatial coordinates of the body axis in all animals with bilateral symmetry, but a detailed knowledge of their molecular function in instructing cell fates is lacking...
متن کاملMesenchymal patterning by Hoxa2 requires blocking Fgf-dependent activation of Ptx1.
Hox genes are known key regulators of embryonic segmental identity, but little is known about the mechanisms of their action. To address this issue, we have analyzed how Hoxa2 specifies segmental identity in the second branchial arch. Using a subtraction approach, we found that Ptx1 was upregulated in the second arch mesenchyme of Hoxa2 mutants. This upregulation has functional significance bec...
متن کاملEarly stages of oligodendrocyte development in the embryonic murine spinal cord proceed normally in the absence of Hoxa2.
Recent discoveries have enhanced our knowledge of the transcriptional control of oligodendrocyte (OG) development. In particular, the transcription factors (TFs) Olig2, Pax6, and Nkx2.2 have been shown to be important in the specification and/or maturation of the OG lineage. Although numerous other TFs are expressed by OGs, little is known regarding their role(s) in oligodendrogenesis. One such...
متن کاملTemporal requirement of Hoxa2 in cranial neural crest skeletal morphogenesis.
Little is known about the spatiotemporal requirement of Hox gene patterning activity in vertebrates. In Hoxa2 mouse mutants, the hyoid skeleton is replaced by a duplicated set of mandibular and middle ear structures. Here, we show that Hoxa2 is selectively required in cranial neural crest cells (NCCs). Moreover, we used a Cre-ERT2 recombinase system to induce a temporally controlled Hoxa2 delet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mechanisms of Development
دوره 108 شماره
صفحات -
تاریخ انتشار 2001